826 research outputs found

    Baroclinic Vorticity Production in Protoplanetary Disks; Part I: Vortex Formation

    Get PDF
    The formation of vortices in protoplanetary disks is explored via pseudo-spectral numerical simulations of an anelastic-gas model. This model is a coupled set of equations for vorticity and temperature in two dimensions which includes baroclinic vorticity production and radiative cooling. Vortex formation is unambiguously shown to be caused by baroclinicity because (1) these simulations have zero initial perturbation vorticity and a nonzero initial temperature distribution; and (2) turning off the baroclinic term halts vortex formation, as shown by an immediate drop in kinetic energy and vorticity. Vortex strength increases with: larger background temperature gradients; warmer background temperatures; larger initial temperature perturbations; higher Reynolds number; and higher resolution. In the simulations presented here vortices form when the background temperatures are ∌200K\sim 200K and vary radially as r−0.25r^{-0.25}, the initial vorticity perturbations are zero, the initial temperature perturbations are 5% of the background, and the Reynolds number is 10910^9. A sensitivity study consisting of 74 simulations showed that as resolution and Reynolds number increase, vortices can form with smaller initial temperature perturbations, lower background temperatures, and smaller background temperature gradients. For the parameter ranges of these simulations, the disk is shown to be convectively stable by the Solberg-H{\o}iland criteria.Comment: Originally submitted to The Astrophysical Journal April 3, 2006; resubmitted November 3, 2006; accepted Dec 5, 200

    size effect on fracture toughness of snow

    Get PDF
    Abstract: Depending on the scale of observation, many engineered and natural materials show different mechanical behaviour. Thus, size effect theories, based on a multiscale approach, analyse the intrinsic (due to microstructural constraints, e.g., grain size) and extrinsic effects (caused by dimensional constraints), in order to improve the knowledge in materials science and applied mechanics. Nevertheless, several problems regarding Solid Mechanics and Materials Science cannot be solved by conventional approaches, because of the complexity and uncertainty of materials proprieties, especially at different scales. For this reason, a simple model, capable of predicting a fracture toughness at different scale, has been developed and presented in this paper. This model is based on the Golden Ratio, which was firstly defined by Euclide as: "A straight line is said to have been cut in extreme and mean ratio when, as the whole line is to the greater segment, so is the greater to the less". Intimately interconnected with the Fibonacci sequence (1, 2, 3, 5, 8, 13, 
), this number controls growth in Nature and recurs in many disciplines, such as art, architecture, design, medicine, etc.., and for man-made and natural brittle materials, the Golden Ratio permits to define the relationship between the average crack spacing and the thickness of quasi-brittle materials. In these cases, the theoretical results provided by the Golden Ratio, used to calibrate a size-effect law of fracture toughness, are in accordance with the experimental measurements taken in several test campaigns carried on different materials (i.e., rocks, ice, and concrete). This paper presents the case of fracture toughness of snow, in which the irrational number 1.61803 recurs when the geometrical dimensions vary. This aspect is confirmed by the results of experimental campaigns performed on snow samples. Thus, we reveals the existence of the size-effect law of fracture toughness of snow and we argue that the centrality of the Golden Ratio in the fracture properties of quasi-brittle materials. Consequently, by means of the proposed model, the Kic of large samples can be simply and rapidly predicted, without knowing the material performances but by testing prototypes of the lower dimensions

    Tracking power system events with accuracy-based PMU adaptive reporting rate

    Get PDF
    Fast dynamics and transient events are becoming more and more frequent in power systems, due to the high penetration of renewable energy sources and the consequent lack of inertia. In this scenario, Phasor Measurement Units (PMUs) are expected to track the monitored quantities. Such functionality is related not only to the PMU accuracy (as per the IEC/IEEE 60255-118-1 standard) but also to the PMU reporting rate (RR). High RRs allow tracking fast dynamics, but produce many redundant measurement data in normal conditions. In view of an effective tradeoff, the present paper proposes an adaptive RR mechanism based on a real-time selection of the measurements, with the target of preserving the information content while reducing the data rate. The proposed method has been tested considering real-world datasets and applied to four different PMU algorithms. The results prove the method effectiveness in reducing the average data throughput as well as its scalability at PMU concentrator or storage level

    Treatment of atherosclerotic renovascular hypertension: review of observational studies and a meta-analysis of randomized clinical trials.

    Get PDF
    open9Atherosclerotic renal artery stenosis can cause ischaemic nephropathy and arterial hypertension. We herein review the observational and randomized clinical trials (RCTs) comparing medical and endovascular treatment for control of hypertension and renal function preservation. Using the Population Intervention Comparison Outcome (PICO) strategy, we identified the relevant studies and performed a novel meta-analysis of all RCTs to determine the efficacy and safety of endovascular treatment when compared with medical therapy. The following outcomes were examined: baseline follow-up difference in mean systolic and diastolic blood pressure (BP), serum creatinine, number of drugs at follow-up, incident events (heart failure, stroke, and worsening renal function), mortality, cumulative relative risk of heart failure, stroke, and worsening renal function. Seven studies comprising a total of 2155 patients (1741 available at follow-up) were considered, including the recently reported CORAL Study. Compared with baseline, diastolic BP fell more at follow-up in patients in the endovascular than in the medical treatment arm (standard difference in means -0.21, 95% confidence interval (CI): -0.342 to -0.078, P = 0.002) despite a greater reduction in the mean number of antihypertensive drugs (standard difference in means -0.201, 95% CI: -0.302 to -0.1, P < 0.001). At variance, follow-up changes (from baseline) of systolic BP, serum creatinine, and incident cardiovascular event rates did not differ between treatment arms. Thus, patients with atherosclerotic renal artery stenosis receiving endovascular treatment required less anti-antihypertensive drugs at follow-up than those medically treated. Notwithstanding this, they evidenced a better control of diastolic BP.openopenCaielli P;Frigo AC;Pengo MF;Rossitto G;Maiolino G;Seccia TM;CalĂČ LA;Miotto D;Rossi GPCaielli, P; Frigo, ANNA CHIARA; Pengo, Mf; Rossitto, G; Maiolino, G; Seccia, TERESA MARIA; CalĂČ, La; Miotto, Diego; Rossi, Gianpaol

    A Reverse Dynamical Investigation of the Catastrophic Wood-Snow Avalanche of 18 January 2017 at Rigopiano, Gran Sasso National Park, Italy

    Get PDF
    On 18 January 2017 a catastrophic avalanche destroyed the Rigopiano Gran Sasso Resort & Wellness (Rigopiano Hotel) in the Gran Sasso National Park in Italy, with 40 people trapped and a death toll of 29. This article describes the location of the disaster and the general meteorological scenario, with field investigations to provide insight on the avalanche dynamics and its interaction with the hotel buildings. The data gathered in situ suggest that the avalanche was a fluidized dry snow avalanche, which entrained a sligthtly warmer snow cover along the path and reached extremely long runout distances with braking effect from mountain forests. The avalanche that reached the Rigopiano area was a “wood-snow” avalanche—a mixture of snow and uprooted and crushed trees, rocks, and other debris. There were no direct eyewitnesses at the event, and a quick post-event survey used a numerical model to analyze the dynamics of the event to estimate the pressure, velocity, and direction of the natural flow and the causes for the destruction of the hotel. Considering the magnitude and the damage caused by the event, the avalanche was at a high to very high intensity scale

    The Domain Chaos Puzzle and the Calculation of the Structure Factor and Its Half-Width

    Full text link
    The disagreement of the scaling of the correlation length xi between experiment and the Ginzburg-Landau (GL) model for domain chaos was resolved. The Swift-Hohenberg (SH) domain-chaos model was integrated numerically to acquire test images to study the effect of a finite image-size on the extraction of xi from the structure factor (SF). The finite image size had a significant effect on the SF determined with the Fourier-transform (FT) method. The maximum entropy method (MEM) was able to overcome this finite image-size problem and produced fairly accurate SFs for the relatively small image sizes provided by experiments. Correlation lengths often have been determined from the second moment of the SF of chaotic patterns because the functional form of the SF is not known. Integration of several test functions provided analytic results indicating that this may not be a reliable method of extracting xi. For both a Gaussian and a squared SH form, the correlation length xibar=1/sigma, determined from the variance sigma^2 of the SF, has the same dependence on the control parameter epsilon as the length xi contained explicitly in the functional forms. However, for the SH and the Lorentzian forms we find xibar ~ xi^1/2. Results for xi determined from new experimental data by fitting the functional forms directly to the experimental SF yielded xi ~ epsilon^-nu} with nu ~= 1/4 for all four functions in the case of the FT method, but nu ~= 1/2, in agreement with the GL prediction, in the the case of the MEM. Over a wide range of epsilon and wave number k, the experimental SFs collapsed onto a unique curve when appropriately scaled by xi.Comment: 15 pages, 26 figures, 1 tabl

    The nature and evolution of Nova Cygni 2006

    Full text link
    AIMS: Nova Cyg 2006 has been intensively observed throughout its full outburst. We investigate the energetics and evolution of the central source and of the expanding ejecta, their chemical abundances and ionization structure, and the formation of dust. METHOD: We recorded low, medium, and/or high-resolution spectra (calibrated into accurate absolute fluxes) on 39 nights, along with 2353 photometric UBVRcIc measures on 313 nights, and complemented them with IR data from the literature. RESULTS: The nova displayed initially the normal photometric and spectroscopic evolution of a fast nova of the FeII-type. Pre-maximum, principal, diffuse-enhanced, and Orion absorption systems developed in a normal way. After the initial outburst, the nova progressively slowed its fading pace until the decline reversed and a second maximum was reached (eight months later), accompanied by large spectroscopic changes. Following the rapid decline from second maximum, the nova finally entered the nebular phase and formed optically thin dust. We computed the amount of formed dust and performed a photo-ionization analysis of the emission-line spectrum during the nebular phase, which showed a strong enrichment of the ejecta in nitrogen and oxygen, and none in neon, in agreement with theoretical predictions for the estimated 1.0 Msun white dwarf in Nova Cyg 2006. The similarities with the poorly investigated V1493 Nova Aql 1999a are discussed.Comment: in press in Astronomy and Astrophysic

    ROMA: a map-making algorithm for polarised CMB data sets

    Full text link
    We present ROMA, a parallel code to produce joint optimal temperature and polarisation maps out of multidetector CMB observations. ROMA is a fast, accurate and robust implementation of the iterative generalised least squares approach to map-making. We benchmark ROMA on realistic simulated data from the last, polarisation sensitive, flight of BOOMERanG.Comment: Accepted for publication in Astronomy & Astrophysics. Version with higher quality figures available at http://www.fisica.uniroma2.it/~cosmo/ROM

    Processor Allocation for Optimistic Parallelization of Irregular Programs

    Full text link
    Optimistic parallelization is a promising approach for the parallelization of irregular algorithms: potentially interfering tasks are launched dynamically, and the runtime system detects conflicts between concurrent activities, aborting and rolling back conflicting tasks. However, parallelism in irregular algorithms is very complex. In a regular algorithm like dense matrix multiplication, the amount of parallelism can usually be expressed as a function of the problem size, so it is reasonably straightforward to determine how many processors should be allocated to execute a regular algorithm of a certain size (this is called the processor allocation problem). In contrast, parallelism in irregular algorithms can be a function of input parameters, and the amount of parallelism can vary dramatically during the execution of the irregular algorithm. Therefore, the processor allocation problem for irregular algorithms is very difficult. In this paper, we describe the first systematic strategy for addressing this problem. Our approach is based on a construct called the conflict graph, which (i) provides insight into the amount of parallelism that can be extracted from an irregular algorithm, and (ii) can be used to address the processor allocation problem for irregular algorithms. We show that this problem is related to a generalization of the unfriendly seating problem and, by extending Tur\'an's theorem, we obtain a worst-case class of problems for optimistic parallelization, which we use to derive a lower bound on the exploitable parallelism. Finally, using some theoretically derived properties and some experimental facts, we design a quick and stable control strategy for solving the processor allocation problem heuristically.Comment: 12 pages, 3 figures, extended version of SPAA 2011 brief announcemen
    • 

    corecore